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The elastic distortion and stability of biaxial nematic liquid crystal on the surface grooves

Zhidong Zhang* and Wenjiang Ye

Department of Applied Physics, Hebei University of Technology, Tianjin 300401, People’s Republic of China

(Received 4 April 2009; final form 11 June 2009)

Fukuda et al. reexamined the Berreman’s model which attributes the surface anchoring to the elastic distortion of
the uniaxial nematic liquid crystal induced by the grooves of a surface. They showed that at the variance with the
assumption made in the original approach of Berreman, the azimuthal distortion of the director cannot be
considered as negligibly small. Now this method is generalized to the biaxial nematic liquid crystals, with some
approximations for the elastic constants. We obtain an additional term in the elastic distortion energy per unit area
which depends on the second power of the cosine of the angle made between the main director n at infinity and the
direction of the surface grooves. This additional term describes the distortion energy of the minor director m
induced by the surface grooves when the n director is anchored exactly along the grooves. We have studied the
stability of the n director around the grooves, and in one-constant model for each director the stability condition is
that the elastic constant of the n director is the maximum.
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As early as 1972, Berreman (1) presented the first

theoretical study on surface anchoring attributed to

non-flat surface geometry and resultant elastic distor-

tion of a uniaxial nematic liquid crystal. In his analysis

he considered a rubbed surface, and assumed that, in a

first approximation, it can be approximated by a sinu-

soidal wave of wave vector q ¼ 2�=� and amplitude A,

where � is the spatial periodicity of the surface. With
the assumption that K1 ¼ K3 ¼ K and that qA<<1, he

showed that the surface topography is responsible for

an equivalent anchoring energy

wB ¼
1

2
KðqAÞ2q; ð1Þ

characterized by an easy direction parallel to the

grooves. Numerous studies have been carried out to
understand the effect of the surface topography on

the molecular orientation of liquid crystalline phases

(2–4). Recently, the experimental realization of a sub-

micrometre-scale surface grooved with sufficient geo-

metrical precision has again provoked interest in the

notion of surface anchoring attributable to the geome-

try of the surface (5–8). In particular, Fukuda et al.

(5) showed that Berreman’s model should yield a sur-
face energy proportional to the fourth power of the

sine of the angle made between the director at infinity

and the direction of the surface grooves.

Biaxial nematic liquid crystals are a fascinating

condensed matter phase that has baffled scientists

engaged in the challenge of demonstrating its actual

existence for more than 30 years, and which has only

recently been found experimentally (9–11). In this

preliminary work, we apply the method proposed by

Fukuda et al. (5) to the biaxial nematic liquid crystals,

with some approximations for the elastic constants.

The elasticity of biaxial nematics is described by 15

elastic constants: 12 of these correspond to director

distortions in the bulk and three constants amount to

surface-like elasticity (12–14). The elastic free energy

density, as given in (12), is

F ¼
X
a;b;c

1

2
½Kaaða � �b � cÞ2 þ Kabða � �a � bÞ2

þ Kacða � �a � cÞ2� þ Cabða � �aÞ � ðb � �bÞ
þ k0;a� � ða � �a� a� � aÞ; ð2Þ

where the summation is over a cyclic permutation of the

three directors and indices. Hereafter, the director fields
are denoted by l, m and n for convenience. Let the

orientation of the director triad at the uniform state be

l ¼ ð1; 0; 0Þ; m ¼ ð0; 10Þ; n ¼ ð0; 0; 1Þ: ð3Þ

When the distortion of the biaxial nematics from the

uniform state is small enough, we can write down the
director triad as

l ¼ ð1; ly; lzÞ; m ¼ ðmx; 1;mzÞ; n ¼ ðnx; ny; 1Þ: ð4Þ

As l, m, n are orthonormal, one has

mx ¼ �ly; ny ¼ �mz; lz ¼ �nx: ð5Þ
Thus, only three out of the six perturbations in

Equation (4) are independent. Following Singh et al.

(15), the elastic free energy density is written as
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gb ¼
1

2
KLLðmz;xÞ2 þ

1

2
KMMðnx;yÞ2 þ

1

2
KNNðly;zÞ2

þ 1

2
KLMðly;xÞ2 þ

1

2
KMNðmz;yÞ2 þ

1

2
KNLðnx;zÞ2

þ 1

2
KMLðly;yÞ2 þ

1

2
KNMðmz;zÞ2 þ

1

2
KLNðnx;xÞ2

� CLMnx;xmz;y � CMNly;ynx;z � CNLmz;zly;x

� 2k0;aðly;znx;y � ly;ynx;zÞ � 2k0;bðly;zmz;x � ly;xmz;zÞ
� 2k0;cðnx;ymz;x � nx;xmz;yÞ ð6Þ

where the indices L, M and N are used instead of a, b

and c. In fact, Equation (6) can be obtained directly

from Equation (2) with conditions given by Equations

(4) and (5). The equations of equilibrium are

�KLLmz;xx � KMNmz;yy � KNMmz;zz þ CLM nx;xy þ CNLly;xz ¼ 0;

ð7aÞ

�KMMnx;yy � KNLnx;zz � KLNnx;xx þ CLMmz;xy þ CMN ly;yz ¼ 0;

ð7bÞ

�KNN ly;zz � KLMly;xx � KMLly;yy þ CMN nx;yz þ CNLmz;xz ¼ 0:

ð7cÞ

Saupe (12) and Singh et al. (15) pointed that in the

uniaxial phase, there are

KLN ¼ KMN ¼ K1; ð8aÞ

KMM ¼ KLL ¼ K2; ð8bÞ

KNL ¼ KNM ¼ K3; ð8cÞ

CLM ¼ K1 � K2; ð8dÞ

CMN ¼ CNL ¼ 0 ð8eÞ

2k0;c ¼ K24 � K2; ð8fÞ
and

KNN ¼ KLM ¼ KML ¼ 0: ð9Þ

Similar approximations can also be found in (16).

Taking Equations (5) and (8) into account,

Equations (7b) and (7a) lead to

K1nx;xx þ K2nx;yy þ K3nx;zz þ ðK1 � K2Þny;xy ¼ 0; ð10aÞ

K2ny;xx þ K1ny;yy þ K3ny;zz þ ðK1 � K2Þnx;xy ¼ 0: ð10bÞ

Equations (10a) and (10b) correspond completely to

Equations (7) and (8) in (5). (In order to use Equation

(6), we assume that n ¼ ðnx; ny; 1Þ instead of

n ¼ ð1; ny; nzÞ as in (5).)

In this preliminary work for the biaxial nematics,

we assume that Equations (10a) and (10b) can still be

used approximately, and CMN ¼ CNL ¼ 0, i.e. the

mixed elastic constants can be neglected except CLM.

This approximation means that the differences of
splay elastic constant and twist one are neglected for

both the l director and the m director. Consequently,

Equation (7c) becomes

KLMly;xx þ KMLly;yy þ KNNly;zz ¼ 0: ð11Þ

In accordance with n ¼ ðnx; ny; 1Þ, we should consider

a surface groove whose shape can be described by

x ¼ �ðy; zÞ ¼ A sin½qðy cos�þ z sin�Þ�; ð12Þ

where � is the angle between z-axis and the direction of

the grooves (see Figure 1). A biaxial nematics is filled

in the infinite region x>�ðy; zÞ. We further assume that

the l director at the surface is perpendicular to it, so

that one has

ly ¼ �Aq cos� cos½qðy cos�þ z sin�Þ�; ð13aÞ

lz ¼ �Aq sin� cos½qðy cos�þ z sin�Þ�: ð13bÞ

According to Equations (5) and (13b), the boundary

condition of nx at the surface is given by

nx ¼ Aq sin� cos½qðy cos�þ z sin�Þ�: ð14Þ

There should be an additional boundary condition

at the surface x , 0 (see (5, 17)),

@gb

@nx;x
�nx þ

@gb

@ny;x
�ny þ

@gb

@ly;x
�ly ¼ 0: ð15Þ

As nx and ly is fixed at the surface and no condition is

imposed on �ny, Equation (15) gives

@gb

@ny;x
¼ 0; ð16Þ

so that one has

KLLny;x þ 2k0;bly;z þ 2k0;cnx;y ¼ 0: ð17Þ

Equations (10a), (10b) and (11) are derived by setting

CMN ¼ CNL ¼ 0 in Equations (7a)–(7c), so that the cou-

pling between ni (i = x, y) and ly is neglected. To the

same order of approximation, we neglect the influence

of surface-like elasticity k0;b. Thus, Equations (10a) and

(10b) can be solved by the boundary condition at the

surface, obtaining (by Equations (8f) and (17)),
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K24nx;y þ K2ðny;x � nx;yÞ ¼ 0 ð18Þ

and the boundary condition nx ¼ ny ¼ 0 at x!1(see

Figure 1). The solution can be found in (17). For simpli-
city, we write only the solution on condition that K24 ¼ 0,

nx ¼ Aq sin�e�qxg1ð�Þ cos½qðy cos�þ z sin�Þ�; ð19Þ

ny ¼
Aq sin� cos�

g1ð�Þ
e�qxg1ð�Þ sin½qðy cos�þ z sin�Þ�;

ð20Þ

with g1ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 �þ ðK3=K1Þ sin2 �

q
, and anchor-

ing energy per unit area reads

f ð�Þ ¼ 1

4
K3A2q3 sin4 �

g1ð�Þ
: ð21Þ

Now, one can find the analytical solution of

Equation (11) with the boundary conditions given by

Equation (13a) at x , 0, and ly ¼ 0 at x!1,

ly ¼ �Aq cos� cos½qðy cos�þ z sin�Þ� exp½�qxhð�Þ�;
ð22Þ

with hð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKML cos2 �þ KNN sin2 �Þ=KLM

q
. From

Equation (6), an additional distortion energy per unit

area is written as

fbð�Þ ¼
1

4
A2q3 cos2 �KLMhð�Þ: ð23Þ

In fact, this additional term is not influenced by

setting K24 ¼ 0. When � ¼ 0, Equation (23) reduces to

fbð� ¼ 0Þ ¼ 1

4
A2q3KML: ð24Þ

In the biaxial nematic phase, fast switching between
different birefringent states may be possible because

birefringence can be changed by the rotation of the

minor director m while the main director n is fixed (18,

19). In anchoring the n director along the grooves, the

m director is distorted and the distortion energy is

approximately given by Equation (24). In the uniaxial

nematic liquid crystals, this distortion energy is zero,

that is, the state of uniaxial nematics characterized by
the director n is uniform in space. In the biaxial

nematic liquid crystals, Equation (24) gives a distor-

tion energy which must be overcome in anchoring the

n director along the grooves.

Now we study stability conditions for aligning

the biaxial nematics on the grooves. For simplicity,

the direction of the grooves is assumed to be parallel

to the z-axis of a Cartesian reference frame. The
elastic free energy density is approximated by

neglecting the mixed elastic constants and surface-

like elasticity; in one-constant model for each direc-

tor (12, 20),

KLL ¼ KMN ¼ KNM ; ð25aÞ

KMM ¼ KNL ¼ KLN ; ð25bÞ

KNN ¼ KLM ¼ KML: ð25cÞ

Some discussions for one-constant model of the biaxial

nematics can be found in (21). Now, the director n is

disturbed by a small angle �� in the direction of the

grooves, that is,

n ¼ ð� sinð��Þ sin �; sinð��Þ cos �; cosð��ÞÞ; ð26Þ

where � depends on x and y. The m director is assumed

to be described by

m ¼ ðcos �; sin �; 0Þ; ð27Þ

and the l director is determined by l ¼ m · n. Through

a long analytical deduction, we arrive at the following
expression for the free energy density,

gb ¼
1

2
KNN �;x

� �2þ �;y
� �2

h i
þ 1

2
ðKLL

� KNNÞ sin2ð��Þ �;x
� �2þ �;y

� �2
h i

; ð28Þ

where a term of the fourth order of sin(��) has been
dropped. When � = 0, with the assumption that the m

director at the sinusoidally grooved surface is always

tangential to the surface, the Berreman’s model gives

y
z

x

A

l

m
n

λ

φ

Figure 1. Schematic representation for a sinusoidally
shaped groove surface with the amplitude A and the spatial
periodicity �. At infinite x!1, there are l ¼ ð1; 0; 0Þ;
m ¼ ð0; 1; 0Þ and n ¼ ð0; 0; 1Þ. Here, � is the angle between
the z-axis and the direction of the grooves, that is, the angle
made between the main director n at infinity and the
direction of the surface grooves.
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Equation (24) directly, replacing KLM by KNN . Under

disturbance of ��, one stability condition is

d2gb

dð��Þ2 ��¼0j >0;

and one has KLL>KNN . If we still use Equation (23) to

represent the director n, but the director l is given by

l ¼ ðcos �; sin �; 0Þ; ð29Þ

we obtain the other stability condition KMM > KNN .

In fact, in one-constant model for each director of

the biaxial nematics, three elastic constants are

Kn ¼
1

2
ðKLL þ KMM � KNNÞ; ð30aÞ

Kl ¼
1

2
ðKNN þ KMM � KLLÞ; ð30bÞ

Km ¼
1

2
ðKNN þ KLL � KMMÞ: ð30cÞ

Thus, the stability condition of the n director around

the grooves is the elastic constant of the n director is
the maximum.

In summary, a method that treats the elastic distor-

tion of the uniaxial nematic liquid crystal induced by

the grooves of a surface has been generalized to the

biaxial nematic liquid crystals, with some approxima-

tions for the elastic constants. We have obtained an

additional term in the elastic distortion energy per

unit area which depends on the second power of the
cosine of the angle made between the main director at

infinity and the direction of the surface grooves. This

additional term describes the distortion energy of the

minor director induced by the surface grooves when the

main director is anchored exactly along the grooves.

Finally, we have studied the stability of the main direc-

tor around the grooves, and in a one-constant model

for each director the stability condition is the elastic
constant of the main director that is the maximum.
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